Model-Free Learning Control of Chemical Processes

نویسندگان

  • S. Syafiie
  • F. Tadeo
  • E. Martinez
چکیده

Learning is the nature for human being. For example, a school-student learns a subject by doing exercise and home-work. Then, a school-teacher grades the school-student’s works. From this student and teacher interaction, the ability of the student mastering the subject is a feedback that the previous teaching method is successful or failure. As a result, the teacher will change the teaching method to improve the student ability for mastering the subject. This is a picture that the reinforcement learning (RL) agent learns the environment. Process control mainly focuses on controlling variable such as pressure, level, flow, temperature, pH, level in the process industries. However, the methodologies and principles are the same as in all control fields. The early successful application control strategy in process control is in evolution of the PID controller and Ziegler-Nichols tuning method (Ziegler and Nichols, 1942). Till nowadays, 95% of the controllers implemented in the process industries are PID-type (Chidambaram and See, 2002). However, as (i) the industrial demands (ii) the computational capabilities of controllers and (iii) complexity of systems under control increase, so the challenge is to implement advanced control algorithms. There have been commercial successes of the intelligent control methods, but the dominating controller in process industries is still by far the PID-controller (Chidambaram and See, 2002). This stands to the fact that a simple and general purpose automatic controller (for example PID) is demanded in process industries. Therefore, designing advanced controllers are to address the industrial user demand. This is the reason that a learning method called model-free learning control (MFLC) is introduced. The MFLC algorithm is based on a well known Q-learning algorithm (Watkins, 1989). Successful applications of RL are well documented in the recent literature, including learning to control mobile robots (Bucak and Zohdy, 2001), sustained inverted flight on an autonomous helicopter (Ng et al., 2004), and learning to minimize average wait time in elevators (Crites and Barto, 1996). However, only few articles can be found regarding RL applications for process control: multi-step actions based on RL was fruitfully applied for thermostat control (Schoknecht and Riedmiller, 2003), and one of the authors successfully applied RL for modeling for optimization in bath reactors by making the most effective use of cumulative data and an approximate model (Martinez, 2000). The reason for the difference between robotics and process control is possibly the nature of the control task in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

Adaptive Input-Output Linearization Control of pH Processes

pH control is a challenging problem due to its highly nonlinear nature. In this paper the performances of two different adaptive global linearizing controllers (GLC) are compared. Least squares technique has been used for identifying the titration curve. The first controller is a standard GLC based on material balances of each species. For implementation of this controller a nonlinear state...

متن کامل

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

Energy Consumption Modeling in Activated Sludge Process Using Coupling PCA-ANFIS Approach

The main challenge in Wastewater Treatment Plants (WWTP) by activated sludge process is the reduction of the energy consumption that varies according to the pollutant load of influent. However, this energy is fundamentally used for aerators in a biological process. The modeling of energy consumption according to the decision parameters deemed necessary for good control of the active sludge ...

متن کامل

Decentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process

The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008